A hybrid brain–computer interface (BCI) system that combines a self-paced BCI and an eye-tracker is proposed for text-entry applications. To make a text-entry of a letter/word, the user must gaze at the target for at least a specific period of time (called the dwell time) and then activate the self-paced BCI with an attempted hand extension. Although the self-paced BCI is available for use at any time, a built-in sleep mode is activated when the user is not looking at a letter/word or when the user gazes at a letter/word for less than the dwell time. Such a design has the advantage of greatly minimizing the false positive outcomes compared to the state-of-art self-paced BCIs. To further improve the system's performance, a method that adaptively updates the BCI classifier is also proposed. The results from seven able-bodied individuals show great improvements compared to the pure self-paced BCI. For dwell times of 0.75 and 1.00 s, the number of false-positives/minute is significantly reduced to 2.5 and 1.7, at acceptable average true positive rates of 54.5% and 54.1%, respectively.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :A Successive Optimization Approach to Pilot Design for Multi-Cell Massive MIMO Systems - 2018ABSTRACT:During this letter, we tend to introduce a completely unique pilot design approach that minimizes the entire
PROJECT TITLE :Spectrally Compatible Waveform Design for MIMO Radar in the Presence of Multiple Targets - 2018ABSTRACT:This Project investigates the matter of the spectrally compatible waveform style for multiple-input multiple-output
PROJECT TITLE :Relay Hybrid Precoding Design in Millimeter-Wave Massive MIMO Systems - 2018ABSTRACT:This Project investigates the relay hybrid precoding style in millimeter-wave massive multiple-input multiple-output systems.
PROJECT TITLE :Optimal Training Design for MIMO Systems With General Power Constraints - 2018ABSTRACT:Coaching design for general multiple-input multiple-output (MIMO) systems is investigated during this Project. Unlike previous
PROJECT TITLE :Optimal Filter Design for Signal Processing on Random Graphs: Accelerated Consensus - 2018ABSTRACT:In graph signal processing, filters arise from polynomials in shift matrices that respect the graph structure,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry