Boosting-based object detection has received significant attention recently. In this paper, we propose totally corrective asymmetric boosting algorithms for real-time object detection. Our algorithms differ from Viola and Jones' detection framework in two ways. Firstly, our boosting algorithms explicitly optimize asymmetric loss of objectives, while AdaBoost used by Viola and Jones optimizes a symmetric loss. Secondly, by carefully deriving the Lagrange duals of the optimization problems, we design more efficient boosting in that the coefficients of the selected weak classifiers are updated in a totally corrective fashion, in contrast to the stagewise optimization commonly used by most boosting algorithms. Column generation is employed to solve the proposed optimization problems. Unlike conventional boosting, the proposed boosting algorithms are able to de-select those irrelevant weak classifiers in the ensemble while training a classification cascade. This results in improved detection performance as well as fewer weak classifiers in the learned strong classifier. Compared with AsymBoost of Viola and Jones, our proposed asymmetric boosting is nonheuristic and the training procedure is much simpler. Experiments on face and pedestrian detection demonstrate that our methods have superior detection performance than some of the state-of-the-art object detectors.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Deep Guided Learning for Fast Multi-Exposure Image Fusion ABSTRACT: MEF-Net is a rapid multi-exposure image fusion (MEF) approach for static image sequences of adjustable spatial resolution and exposure number
PROJECT TITLE : Fast Adaptive Bilateral Filtering ABSTRACT: For edge-preserving smoothing, a fixed Gaussian range kernel and a spatial kernel are employed in the bilateral filter. It is possible to generalise this filter by allowing
PROJECT TITLE : Fast High-Dimensional Bilateral and Nonlocal Means Filtering ABSTRACT: Currently available rapid methods for bilateral and nonlocal means filtering are limited to grayscale images. High-dimensional data, such as
PROJECT TITLE : On-Device Scalable Image-Based Localization via Prioritized Cascade Search and Fast One-Many RANSAC ABSTRACT: We describe a complete on-device solution for large-scale image-based urban localisation. Compact image
PROJECT TITLE : Fast Fault Diagnosis Method for Hall Sensors in Brushless DC Motor Drives ABSTRACT: Because of their simplicity and low cost, brushless direct current motors with Hall sensors are frequently employed in a wide

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry