ABSTRACT:

Conventional rigid and generalpurpose on-chip networks occupy significant logic and wire resources in fieldprogrammable gate arrays (FPGAs). To reduce the area cost, the authors present a topology customisation technique, using which on-demand network interconnects are systematically established in reconfigurable hardware. First, the authors present a design of a customised crossbar switch, where physical topologies are identical to logical topologies for a given application. A multiprocessor system combined with the presented custom crossbar has been designed with the ESPAM design environment and prototyped in the FPGA device. Experiments with practical applications show that the custom crossbar occupies significantly less area, maintains higher performance and reduces the power consumption, when compared with the general-purpose crossbars. In addition, the authors present that configuration performance and cost can be improved by reducing the functional area cost in FPGAs. Second, a customisation technique for the circuit-switched network-on-chip (NoC) is presented, where only necessary half-duplex interconnects are established for a given application mapping. The presented customised NoC is implemented in FPGA and results indicate that the area is reduced by 66%, when compared with the general-purpose networks.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Video Dissemination over Hybrid Cellular and Ad Hoc Networks - 2014 ABSTRACT: We study the problem of disseminating videos to mobile users by using a hybrid cellular and ad hoc network. In particular, we formulate
PROJECT TITLE : Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor Network - 2014 ABSTRACT: Recently, the research focus on geographic routing, a promising routing scheme in wireless sensor networks (WSNs),
PROJECT TITLE : Security Analysis of Handover Key Management in 4G LTESAE Networks - 2014 ABSTRACT: The goal of 3GPP Long Term Evolution/System Architecture Evolution (LTE/SAE) is to move mobile cellular wireless technology
PROJECT TITLE : PSR A Lightweight Proactive Source Routing Protocol For Mobile Ad Hoc Networks - 2014 ABSTRACT: Opportunistic data forwarding has drawn much attention in the research community of multihop wireless networking,
PROJECT TITLE : On the Delay Advantage of Coding in Packet Erasure Networks - 2014 ABSTRACT: We consider the delay of network coding compared to routing with retransmissions in packet erasure networks with probabilistic erasures.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry