Fast tracking algorithm using modified potential function


This study introduces a new potential function-based modelling approach for real-time object tracking with single camera. Real-time tracking requires the least complex techniques for processing and classification and still provide accurate results. Particle filter-based algorithms allow accurate estimations of the displacement and scaling of the object for tracking, but at the cost of high computational complexity and complicated modelling. Also, the existing single-camera tracking systems lack the ability to predict the direction of motion of the object and their performance is significantly affected by occlusions. This study proposes a new method to address these four key issues. The method is principally based upon the potential function, which has been modified for motion image sequences. Potential function uses the current estimates of nonlinear scaling and drift vector with a priori knowledge of the object to compute the tracking parameters in the form of diffusion matrices. The concept of attractors and repellers inside a potential field has been used in analogy to classify different directions of motion in the image plane, such that the object tends to drift towards the attractors and away from repellers. Attractor for every consecutive pair of frames is estimated using the set of transformations (displacement and scaling) occurred due to the motion in a particular direction. The proposed technique works well with minimal tracking errors and a computational complexity of O(1).

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Deep Guided Learning for Fast Multi-Exposure Image Fusion ABSTRACT: MEF-Net is a rapid multi-exposure image fusion (MEF) approach for static image sequences of adjustable spatial resolution and exposure number
PROJECT TITLE : Fast Adaptive Bilateral Filtering ABSTRACT: For edge-preserving smoothing, a fixed Gaussian range kernel and a spatial kernel are employed in the bilateral filter. It is possible to generalise this filter by allowing
PROJECT TITLE : Fast High-Dimensional Bilateral and Nonlocal Means Filtering ABSTRACT: Currently available rapid methods for bilateral and nonlocal means filtering are limited to grayscale images. High-dimensional data, such as
PROJECT TITLE : On-Device Scalable Image-Based Localization via Prioritized Cascade Search and Fast One-Many RANSAC ABSTRACT: We describe a complete on-device solution for large-scale image-based urban localisation. Compact image
PROJECT TITLE : Fast Fault Diagnosis Method for Hall Sensors in Brushless DC Motor Drives ABSTRACT: Because of their simplicity and low cost, brushless direct current motors with Hall sensors are frequently employed in a wide

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry