When constructing a search tree for multiplayer games, there are two basic approaches to propagating the opponents' moves. The first approach, which stems from the MaxN algorithm, assumes each opponent will follow his highest valued heuristic move. In the second approach, the paranoid algorithm, the player prepares for the worst case by assuming the opponents will select the worst move with respect to him. There is no definite answer as to which approach is better, and their main shortcoming is that their strategy is fixed. We therefore suggest the MaxN-paranoid mixture (MP-Mix) algorithm: a multiplayer adversarial search that switches search strategies according to the game situation. The MP-mix algorithm examines the current situation and decides whether the root player should follow the MaxN principle, the paranoid principle, or the newly presented directed offensive principle. To evaluate our new algorithm, we performed extensive experimental evaluation on three multiplayer domains: Hearts, Risk, and Quoridor. In addition, we also introduce the opponent impact (OI) measure, which measures the players' ability to impede their opponents' efforts, and show its relation to the relative performance of the MP-mix strategy. The results show that our MP-mix strategy significantly outperforms MaxN and paranoid in various settings in all three games.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Dynamic, Fine-Grained Data Plane Monitoring With Monocle - 2018ABSTRACT:Ensuring network reliability is important for satisfying service-level objectives. However, diagnosing network anomalies during a timely fashion
PROJECT TITLE :Visualization, Selection, and Analysis of Traffic FlowsABSTRACT:Visualization of the trajectories of moving objects results in dense and cluttered images, that hinders exploration and understanding. It also hinders
PROJECT TITLE : R3E Reliable Reactive Routing Enhancement for Wireless Sensor Networks - 2014 ABSTRACT: Providing reliable and efficient communication under fading channels is one of the major technical challenges in wireless
PROJECT TITLE : PSR A Lightweight Proactive Source Routing Protocol For Mobile Ad Hoc Networks - 2014 ABSTRACT: Opportunistic data forwarding has drawn much attention in the research community of multihop wireless networking,
PROJECT TITLE : On the Delay Advantage of Coding in Packet Erasure Networks - 2014 ABSTRACT: We consider the delay of network coding compared to routing with retransmissions in packet erasure networks with probabilistic erasures.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry