Games are played by a wide variety of audiences. Different individuals will play with different gaming styles and employ different strategic approaches. This often involves interacting with nonplayer characters that are controlled by the game AI. From a developer's standpoint, it is important to design a game AI that is able to satisfy the variety of players that will interact with the game. Thus, an adaptive game AI that can scale the difficulty of the game according to the proficiency of the player has greater potential to customize a personalized and entertaining game experience compared to a static game AI. In particular, dynamic game difficulty scaling refers to the use of an adaptive game AI that performs game adaptations in real time during the game session. This paper presents two adaptive algorithms that use ideas from reinforcement learning and evolutionary computation to improve player satisfaction by scaling the difficulty of the game AI while the game is being played. The effects of varying the learning and mutation rates are examined and a general rule of thumb for the parameters is proposed. The proposed algorithms are demonstrated to be capable of matching its opponents in terms of mean scores and winning percentages. Both algorithms are able to generalize well to a variety of opponents.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis ABSTRACT: Incorporating spatial and temporal patterns present in facial behavior should substantially improve facial
PROJECT TITLE : Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images ABSTRACT: The use of kinetic modeling (KM) on a voxel level in dynamic PET pictures frequently results in large amounts of noise,
PROJECT TITLE : Robust Unsupervised Multi-view Feature Learning with Dynamic Graph ABSTRACT: By modeling the affinity associations with a graph to lower the dimension, graph-based multi-view feature learning algorithms learn a
PROJECT TITLE : Deep Tone Mapping Operator for High Dynamic Range Images ABSTRACT: The need for a rapid tone mapping operator (TMO) capable of adapting to a wide range of high dynamic range (HDR) content on low dynamic range (LDR)
PROJECT TITLE : Dynamic Scene Deblurring by Depth Guided Model ABSTRACT: Object movement, depth fluctuation, and camera shake are the most common causes of dynamic scene blur. For the most part, present approaches use picture

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry