PROJECT TITLE :

Land Cover Change Detection at Subpixel Resolution With a Hopfield Neural Network

ABSTRACT:

In this paper, a new subpixel resolution land cowl change detection (LCCD) technique primarily based on the Hopfield neural network (HNN) is proposed. The new technique borrows info from a known fine spatial resolution land cover map (FSRM) representing one date for subpixel mapping (SPM) from a rough spatial resolution image on another, closer date. It is implemented by using the thematic information within the FSRM to change the initialization of neuron values in the original HNN. The predicted SPM result was compared to the first FSRM to realize subpixel resolution LCCD. The proposed methodology was compared with the first unmodified HNN method with six state-of-the-art methods for LCCD. To explore the impact of uncertainty in spectral unmixing, that mainly originates from spectral separability within the input, coarse image, and the point unfold operate (PSF) of the sensor, a group of artificial multispectral images with completely different class separabilities and PSFs was used in experiments. It absolutely was found that the proposed LCCD technique (i.e., HNN with an FSRM) will separate additional real changes from noise and turn out a lot of correct LCCD results than the state-of-the-art strategies. The advantage of the proposed method is a lot of evident when the class separability is little and therefore the variance in the PSF is massive, that is, the uncertainty in spectral unmixing is large. Furthermore, the utilization of an FSRM will expedite the HNN-primarily based processing needed for LCCD. The advantage of the proposed methodology was conjointly validated by applying to a group of real Landsat-Moderate Resolution Imaging Spectroradiometer (MODIS) images.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Determining the Type and Starting Time of Land Cover and Land Use Change in Southern Ghana Based on Discrete Analysis of Dense Landsat Image Time SeriesABSTRACT:Rural to urban migration and relatively high fertility
PROJECT TITLE :Web-Enabled Landsat Data Time Series for Monitoring Urban Heat Island Impacts on Land Surface PhenologyABSTRACT:Urbanization will increase the impacts of cities on the natural surroundings, in half by altering local
PROJECT TITLE :Downscaling of Landsat and MODIS Land Surface Temperature Over the Heterogeneous Urban Area of MilanABSTRACT:Remotely sensed pictures of land surface temperature (LST) with high spatial resolution are required for
PROJECT TITLE :Quantifying Spatial–Temporal Pattern of Urban Heat Island in Beijing: An Improved Assessment Using Land Surface Temperature (LST) Time Series Observations From LANDSAT, MODIS, and Chinese New Satellite GaoFen-1ABSTRACT:The
PROJECT TITLE :Inverse Gaussian-based composite channel model and time series generator for land mobile satellite systems under tree shadowingABSTRACT:In this study, a brand new composite channel model for land mobile satellite

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry