A new approach to extraction of affine invariant features of contour image and matching strategy is proposed for shape recognition. Firstly, the centroid distance and azimuth angle of each boundary point are computed. Then, with a prior-defined angle interval, all the points in the neighbor region of the sample point are considered to calculate the average distance for eliminating noise. After that, the centroid distance ratios (CDRs) of any two opposite contour points to the barycenter are achieved as the representation of the shape, which will be invariant to affine transformation. Since the angles of contour points will change non-linearly among affine related images, the CDRs should be re-sampled and combined sequentially to build one-by-one matching pairs of the corresponding points. The core issue is how to determine the angle positions for sampling, which can be regarded as an optimization problem of path planning. An ant colony optimization (ACO)-based path planning model with some constraints is presented to address this problem. Finally, the Euclidean distance is adopted to evaluate the similarity of shape features in different images. The experimental results demonstrate the efficiency of the proposed method in shape recognition with translation, scaling, rotation and distortion.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Natural Language Process-Based Framework for Automatic Association Word Extraction ABSTRACT: In psychology, word association has been extensively explored for exposing mental representations and relationships
PROJECT TITLE : Automatic Keyword Extraction for Text Summarization A Survey ABSTRACT: Data has been quickly rising in recent years in every sphere, including journalism, social media, banking, education, and so on. Due to the
PROJECT TITLE : Financial Latent Dirichlet Allocation (FinLDA) Feature Extraction in Text and Data Mining for Financial Time Series Prediction ABSTRACT: Many financial time series predictions based on fundamental analysis have
PROJECT TITLE : Automatic Land Cover Reconstruction From Historical Aerial Images An Evaluation of Features Extraction and Classification Algorithms ABSTRACT: As large-scale epidemiological studies including retrospective study
PROJECT TITLE :Extraction Algorithm of English Text Summarization for English Teaching - 2018ABSTRACT:In order to improve the power of sharing and scheduling capability of English teaching resources, an improved algorithm for

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry