Disturbed Bayesian Learning in Multiagent Systems: Improving our understanding of its capabilities and limitations


In this article, we study social networks of agents, where agents learn not only from private signals (i.e., signals only available to the agents receiving them), but from other agents too. Based on all the available information, agents modify their beliefs in events of interest and make decisions on which actions to take based on the beliefs. In doing so, they optimize functions that reflect some (cumulative) reward. This problem has been studied in various disciplines including control theory, operations research, artificial intelligence, game theory, information theory, economics, statistics, computer science, and Signal Processing.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Hop-by-Hop Message Authenticationand Source Privacy in WirelessSensor Networks - 2014 ABSTRACT: Message authentication is one of the most effective ways to thwart unauthorized and corrupted messages from being
PROJECT TITLE :Network Traffic Classification Using Correlation Information - 2013ABSTRACT:Traffic classification has wide applications in network management, from security monitoring to quality of service measurements. Recent
PROJECT TITLE :The Generalization Ability of Online Algorithms for Dependent Data - 2013ABSTRACT:We study the generalization performance of online learning algorithms trained on samples coming from a dependent source of data.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry