PROJECT TITLE :

Statistical Comparison of Fault Detection Models for Semiconductor Manufacturing Processes

ABSTRACT:

A variety of statistical and data-mining techniques have been developed for the fault detection (FD) modeling of semiconductor manufacturing processes over the past three decades. However, few studies have analyzed which models are adequate for different types of fault data. In this paper, we define a FD model as an algorithm combining feature extraction, feature selection, and classification. We prepare six process data scenarios and collect data by simulating an etching tool. In total, 117 possible algorithm combinations are tested as FD models for the six datasets. With these test results, we conduct statistical analyses from two perspectives: 1) the algorithm perspective and 2) FD model perspective. From the algorithm perspective, we compare the performance of competing algorithms in the three model-building steps using multiple comparison methods and discuss the advantages and disadvantages of individual algorithms. From the model perspective, we determine which algorithm combinations are recommended for FD models of the semiconductor process and explain why some combinations do not exhibit the expected performance. In both analyses, we interpret some results using 3-D plots.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Statistical Properties of Transmissions Subject to Rayleigh Fading and Ornstein-Uhlenbeck Mobility ABSTRACT: In this paper, we derive closed-form expressions for significant statistical properties of the link signal-to-noise
PROJECT TITLE : QoS Driven Task Offloading with Statistical Guarantee in Mobile Edge Computing ABSTRACT: Popular mobile applications, such as augmented reality, typically offload the work they need to do on their devices to resource-rich
PROJECT TITLE : Millimeter-Wave Mobile Sensing and Environment Mapping Models, Algorithms and Validation ABSTRACT: One relevant research paradigm, particularly at mm-wave and sub-THz bands, is to integrate efficient connectivity,
PROJECT TITLE : Cascaded Composite Turbulence and Misalignment: Statistical Characterization and Applications to Reconfigurable Intelligent Surface-Empowered Wireless Systems ABSTRACT: It is anticipated that high-frequency
PROJECT TITLE : Statistical Nearest Neighbors for Image Denoising ABSTRACT: Non-local-means image denoising is based on processing a reference patch's neighbours. The algorithm's processing overhead can be reduced by using a small

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry