Brain Enabled by Next-Generation Neurotechnology: Using Multiscale and Multimodal Models


As many articles in this issue of IEEE Pulse demonstrate, interfacing directly with the brain presents several fundamental challenges. These challenges reside at multiple levels and span many disciplines, ranging from the need to understand brain states at the level of neural circuits to creating technological innovations to facilitate new therapeutic options. The goal of our multiuniversity research team, composed of researchers from Stanford University, Brown University, the University of California at San Francisco (UCSF), and the University College London (UCL), is to substantially elevate the fundamental understanding of brain information processing and its relationship with sensation, behavior, and injury. Our team was assembled to provide expertise ranging from neuroscience to neuroengineering and to neurological and psychiatric clinical guidance, all of which are critical to the overarching research goal. By employing a suite of innovative experimental, computational, and theoretical approaches, the Defense Advanced Research Projects Agency (DARPA) Reorganization and Plasticity to Accelerate Injury Recovery (REPAIR) team has set its sights on learning how the brain and its microcircuitry react (e.g., to sudden physiological changes) and what can be done to encourage recovery from such (reversible) injury. In this article, we summarize some of the team's technical goals, approaches, and early illustrative results.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Millimeter-Wave Mobile Sensing and Environment Mapping Models, Algorithms and Validation ABSTRACT: One relevant research paradigm, particularly at mm-wave and sub-THz bands, is to integrate efficient connectivity,
PROJECT TITLE : Multiple Sclerosis Lesion Analysis in Brain Magnetic Resonance Images Techniques and Clinical Applications ABSTRACT: Multiple sclerosis (MS) is a chronic inflammatory and degenerative disease of the central nervous
PROJECT TITLE : Leveraging Deep Learning Techniques to Improve P300-Based Brain Computer Interfaces ABSTRACT: The Brain-Computer Interface, or BCI, is a technology that has matured to the point where it can successfully connect
PROJECT TITLE : Deep MR Brain Image Super-Resolution Using Spatio-Structural Priors ABSTRACT: Accurate diagnosis require high-resolution Magnetic Resonance images (MR). Factors such as hardware and processing limitations limit
PROJECT TITLE : Robust Empirical Bayesian Reconstruction of Distributed Sources for Electromagnetic Brain Imaging ABSTRACT: Electromagnetic brain imaging uses non-invasive recordings of magnetic fields and electric potentials

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry