High-Efficiency, Multijunction nc-Si:H-Based Solar Cells at High Deposition Rate


Hydrogenated nanocrystalline silicon (nc-Si:H) is a promising candidate to replace the hydrogenated amorphous silicon–germanium alloy (a-SiGe:H) in multijunction thin-film silicon solar cells due to its superior long-wavelength response and stability against light-induced degradation. Due to its indirect bandgap, the absorbing nc-Si:H layer needs to be much thicker than its amorphous counterpart. For nc-Si:H-based solar cells to be commercially viable, the challenge is to deposit the nc-Si:H layer at a high rate with good quality. In this paper, we report on the development of our proprietary high-frequency glow discharge deposition technology to fabricate high-efficiency, large-area, a-Si:H/nc-Si:H/nc-Si:H triple-junction solar cells at a high deposition rate >1 nm/s. The National Renewable Energy Laboratory (NREL) has confirmed stable efficiency of 12.41% on a 1.05-cm$^2$ solar cell. We have attained initial efficiency of 12.33% on an encapsulated cell of aperture area ∼400 cm$^2$; the corresponding stable efficiency is projected to be 11.7–11.9%.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : R3E Reliable Reactive Routing Enhancement for Wireless Sensor Networks - 2014 ABSTRACT: Providing reliable and efficient communication under fading channels is one of the major technical challenges in wireless
PROJECT TITLE : Network Resource Allocation for Users With Multiple Connections Fairness and Stability - 2014 ABSTRACT: This paper studies network resource allocation between users that manage multiple connections, possibly
PROJECT TITLE : Multi-Core Embedded Wireless Sensor Networks Architecture and Applications - 2014 ABSTRACT: Technological advancements in the silicon industry, as predicted by Moore's law, have enabled integration of billions
PROJECT TITLE : Joint Routing and Medium Access Control in Fixed Random Access Wireless Multihop Networks - 2014 ABSTRACT: We study cross-layer design in random-access-based fixed wireless multihop networks under a physical
PROJECT TITLE : Joint Interference Coordination and Load Balancing for OFDMA Multihop Cellular Networks - 2014 ABSTRACT: Multihop cellular networks (MCNs) have drawn tremendous attention due to its high throughput and extensive

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry