ABSTRACT:

The effective integration of knowledge representation, reasoning, and learning in a robust computational model is one of the key challenges of computer science and artificial intelligence. In particular, temporal knowledge and models have been fundamental in describing the behavior of computational systems. However, knowledge acquisition of correct descriptions of a system's desired behavior is a complex task. In this paper, we present a novel neural-computation model capable of representing and learning temporal knowledge in recurrent networks. The model works in an integrated fashion. It enables the effective representation of temporal knowledge, the adaptation of temporal models given a set of desirable system properties, and effective learning from examples, which in turn can lead to temporal knowledge extraction from the corresponding trained networks. The model is sound from a theoretical standpoint, but it has also been tested on a case study in the area of model verification and adaptation. The results contained in this paper indicate that model verification and learning can be integrated within the neural computation paradigm, contributing to the development of predictive temporal knowledge-based systems and offering interpretable results that allow system researchers and engineers to improve their models and specifications. The model has been implemented and is available as part of a neural-symbolic computational toolkit.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Revenue-Optimal Auction For Resource Allocation in Wireless Virtualization: A Deep Learning Approach ABSTRACT: Virtualization of wireless networks has emerged as an essential component of future cellular networks.
PROJECT TITLE : Multi-hop Deflection Routing Algorithm Based on Reinforcement Learning for Energy-Harvesting Nanonetworks ABSTRACT: Nanonetworks are made up of nano-nodes that interact with one another, and the size of these nano-nodes
PROJECT TITLE : Memory-Aware Active Learning in Mobile Sensing Systems ABSTRACT: A novel active learning framework for activity recognition utilizing wearable sensors is presented here. When deciding which sensor data should be
PROJECT TITLE : Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing ABSTRACT: The term "vehicular edge computing" (VEC) refers to a potentially useful paradigm that is based on the Internet of vehicles

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry