In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Data-Driven Control for Interlinked AC/DC Micro grids Via Model-Free Adaptive Control and Dual-Droop Control - 2017ABSTRACT:This paper investigates the coordinated power sharing problems of interlinked ac/dc microgrids.
PROJECT TITLE : Data-Driven Faulty Node Detection Scheme for Wireless Sensor Networks - 2017 ABSTRACT: During this paper, a faulty node detection theme with a hybrid algorithm using a Markov chain model that performs collective
PROJECT TITLE : Data-driven Answer Selection in Community QA Systems - 2017 ABSTRACT: Finding similar questions from historical archives has been applied to question answering, with well theoretical underpinnings and nice practical
PROJECT TITLE :Weighted Data-Driven Fault Detection and Isolation: A Subspace-Based Approach and AlgorithmsABSTRACT:Well-established theory of subspace system identification and model-primarily based fault detection and isolation
PROJECT TITLE :A Hybrid Feature Selection Scheme for Reducing Diagnostic Performance Deterioration Caused by Outliers in Data-Driven DiagnosticsABSTRACT:In apply, outliers, defined as data points that are distant from the opposite

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry