In this paper, a data-driven model-free adaptive control (MFAC) approach is proposed based on a new dynamic linearization technique (DLT) with a novel concept called pseudo-partial derivative for a class of general multiple-input and multiple-output nonlinear discrete-time systems. The DLT includes compact form dynamic linearization, partial form dynamic linearization, and full form dynamic linearization. The main feature of the approach is that the controller design depends only on the measured input/output data of the controlled plant. Analysis and extensive simulations have shown that MFAC guarantees the bounded-input bounded-output stability and the tracking error convergence.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Small Low-Contrast Target Detection Data-Driven Spatiotemporal Feature Fusion and Implementation ABSTRACT: An essential and difficult task in the airspace is the detection of low-contrast targets that are relatively
PROJECT TITLE : A Data Dependent Multiscale Model for Hyperspectral Unmixing With Spectral Variability ABSTRACT: Environmental, lighting, atmospheric, and temporal variables can all contribute to hyperspectral image spectral
PROJECT TITLE : Estimation, Control and Prediction of Voltage Level and Stability at Receiving Node ABSTRACT: Receiver voltage stability is addressed in this article. Voltage stability and level are intertwined concepts. Although
PROJECT TITLE :Data-Driven Control for Interlinked AC/DC Micro grids Via Model-Free Adaptive Control and Dual-Droop Control - 2017ABSTRACT:This paper investigates the coordinated power sharing problems of interlinked ac/dc microgrids.
PROJECT TITLE : Data-Driven Faulty Node Detection Scheme for Wireless Sensor Networks - 2017 ABSTRACT: During this paper, a faulty node detection theme with a hybrid algorithm using a Markov chain model that performs collective

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry