ABSTRACT:

We propose kernel parallel analysis (kPA) for automatic kernel scale and model order selection in Gaussian kernel principal component analysis (KPCA). Parallel analysis is based on a permutation test for covariance and has previously been applied for model order selection in linear PCA, we here augment the procedure to also tune the Gaussian kernel scale of radial basis function based KPCA. We evaluate kPA for denoising of simulated data and the U.S. postal data set of handwritten digits. We find that kPA outperforms other heuristics to choose the model order and kernel scale in terms of signal-to-noise ratio of the denoised data.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : A Multitask Learning Model for Traffic Flow and Speed Forecasting ABSTRACT: Accurate short-term traffic state forecasting is beneficial to Intelligent Transportation Systems (ITS) research and applications. This
PROJECT TITLE : A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis ABSTRACT: Incorporating spatial and temporal patterns present in facial behavior should substantially improve facial
PROJECT TITLE : A Two-Stage Model to Predict Surgical Patients’ Lengths of Stay From an Electronic Patient Database ABSTRACT: Increasing healthcare expenses and a growing demand for services necessitate a more efficient use
PROJECT TITLE : OFS-NN An Effective Phishing Websites Detection Model Based on Optimal Feature Selection and Neural Network ABSTRACT: Phishing attacks have become a major menace to people's daily lives and social networks. Attackers
PROJECT TITLE : Lane Detection of Curving Road for Structural High-way with Straight-curve Model on Vision ABSTRACT: Curve is a traffic accident-prone place in the structural road's traffic system. A problematic aspect for assisted

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry