Neural Assembly Computing


Spiking neurons can realize several computational operations when firing cooperatively. This is a prevalent notion, although the mechanisms are not yet understood. A way by which neural assemblies compute is proposed in this paper. It is shown how neural coalitions represent things (and world states), memorize them, and control their hierarchical relations in order to perform algorithms. It is described how neural groups perform statistic logic functions as they form assemblies. Neural coalitions can reverberate, becoming bistable loops. Such bistable neural assemblies become short- or long-term memories that represent the event that triggers them. In addition, assemblies can branch and dismantle other neural groups generating new events that trigger other coalitions. Hence, such capabilities and the interaction among assemblies allow neural networks to create and control hierarchical cascades of causal activities, giving rise to parallel algorithms. Computing and algorithms are used here as in a nonstandard computation approach. In this sense, neural assembly computing (NAC) can be seen as a new class of spiking neural network machines. NAC can explain the following points: 1) how neuron groups represent things and states; 2) how they retain binary states in memories that do not require any plasticity mechanism; and 3) how branching, disbanding, and interaction among assemblies may result in algorithms and behavioral responses. Simulations were carried out and the results are in agreement with the hypothesis presented. A ${bf M}{scriptstylebf atlab}$ code is available as a supplementary material.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :High Voltage Gain Interleaved Boost Converter with Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle ApplicationsABSTRACT:Due to the additional vigorous regulations on carbon gas emissions
PROJECT TITLE :Robust Automated VHF Modulation Recognition Based on Deep Convolutional Neural Networks - 2018ABSTRACT:This letter proposes a completely unique modulation recognition algorithm for terribly high frequency (VHF)
PROJECT TITLE :Spatial and Angular Resolution Enhancement of Light Fields Using Convolutional Neural Networks - 2018ABSTRACT:Light field imaging extends the ancient photography by capturing both spatial and angular distribution
PROJECT TITLE :Moiré Photo Restoration Using Multiresolution Convolutional Neural Networks - 2018ABSTRACT:Digital cameras and mobile phones enable us to conveniently record precious moments. Whereas digital image quality is continually
PROJECT TITLE :End-to-End Blind Image Quality Assessment Using Deep Neural Networks - 2018ABSTRACT:We have a tendency to propose a multi-task finish-to-end optimized deep neural network (MEON) for blind image quality assessment

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry