PROJECT TITLE :

Quantitative Analysis of the Combined Effect of Substrate Rigidity and Topographic Guidance on Cell Morphology

ABSTRACT:

Live cells are exquisitely sensitive to both the sub- stratum rigidity and texture. To explore cell responses to both these types of inputs in a precisely controlled fashion, we analyzed the responses of Chinese hamster ovary (CHO) cells to nanotopographically defined substrata of different rigidities, ranging from 1.8 MPa to 1.1 GPa. Parallel arrays of nanogrooves (800-nm width, 800-nm space, and 800-nm depth) on polyurethane (PU)-based material surfaces were fabricated by UV-assisted capillary force lithography (CFL) over an area of 5 mm × 3 mm. We observed dramatic morphological responses of CHO cells, evident in their elongation and polarization along the nanogrooves direction. The cells were progressively more spread and elongated as the sub- stratum rigidity increased, in an integrin β1 dependent manner. However, the degree of orientation was independent of substratum rigidity, suggesting that the cell shape is primarily determined by the topographical cues.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Cost-Optimal Caching for D2D Networks With User Mobility: Modeling, Analysis, and Computational Approaches - 2018ABSTRACT:Caching well-liked files at the user equipments (UEs) provides an efficient way to alleviate
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Shadow Attacks Based on Password Reuses: A Quantitative Empirical Analysis - 2018ABSTRACT:With the proliferation of internet sites, the protection level of password-protected accounts is now not purely determined
PROJECT TITLE : Quantitative Modeling and Analytical Calculation of Elasticity in Cloud Computing - 2017 ABSTRACT: Elasticity is a elementary feature of cloud computing and will be thought-about as a great advantage and a key
PROJECT TITLE :Quantitative Analysis Method of Error Sources in Magnetohydrodynamic Angular Rate Sensor for Structure OptimizationABSTRACT:A comprehensive study on the error analysis of magnetohydrodynamic (MHD) angular rate sensor

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry