We propose semantic model vectors, an intermediate level semantic representation, as a basis for modeling and detecting complex events in unconstrained real-world videos, such as those from YouTube. The semantic model vectors are extracted using a set of discriminative semantic classifiers, each being an ensemble of SVM models trained from thousands of labeled web images, for a total of 280 generic concepts. Our study reveals that the proposed semantic model vectors representation outperforms—and is complementary to—other low-level visual descriptors for video event modeling. We hence present an end-to-end video event detection system, which combines semantic model vectors with other static or dynamic visual descriptors, extracted at the frame, segment, or full clip level. We perform a comprehensive empirical study on the 2010 TRECVID Multimedia Event Detection task (http://www.nist.gov/itl/iad/mig/med10.cfm), which validates the semantic model vectors representation not only as the best individual descriptor, outperforming state-of-the-art global and local static features as well as spatio-temporal HOG and HOF descriptors, but also as the most compact. We also study early and late feature fusion across the various approaches, leading to a 15% performance boost and an overall system performance of 0.46 mean average precision. In order to promote further research in this direction, we made our semantic model vectors for the TRECVID MED 2010 set publicly available for the community to use (http://www1.cs.columbia.edu/~mmerler/SMV.html).

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : An efficient Android malware detection system based on method-level behavioral semantic analysis ABSTRACT: Every day, 12 000 new Android malware samples will be developed, according to a recent report. The efficient
PROJECT TITLE : Robust Semantic Template Matching Using a Superpixel Region Binary Descriptor ABSTRACT: To compare the similarity between a template picture and a scene image, low-level image parameters like pixel intensity and
PROJECT TITLE : Semantic Prior Analysis for Salient Object Detection ABSTRACT: The goal of salient item recognition is to identify the image's most important elements. Semantic priors are integrated into the salient object recognition
PROJECT TITLE :Semantic Neighbor Graph Hashing for Multimodal Retrieval - 2018ABSTRACT:Hashing strategies are widely used for approximate nearest neighbor search in recent years due to its computational and storage effectiveness.
PROJECT TITLE :Her2Net A Deep Framework for Semantic Segmentation and Classification of Cell Membranes and Nuclei in Breast Cancer Evaluation - 2018ABSTRACT:We tend to gift an economical deep learning framework for identifying,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry