PROJECT TITLE :

QoE Prediction Model and its Application in Video Quality Adaptation Over UMTS Networks

ABSTRACT:

The primary aim of this paper is to present a new content-based, non-intrusive quality of experience (QoE) prediction model for low bitrate and resolution (QCIF) H.264 encoded videos and to illustrate its application in video quality adaptation over Universal Mobile Telecommunication Systems (UMTS) networks. The success of video applications over UMTS networks very much depends on meeting the QoE requirements of users. Thus, it is highly desirable to be able to predict and, if appropriate, to control video quality to meet such QoE requirements. Video quality is affected by distortions caused both by the encoder and the UMTS access network. The impact of these distortions is content dependent, but this feature is not widely used in non-intrusive video quality prediction models. In the new model, we chose four key parameters that can impact video quality and hence the QoE-content type, sender bitrate, block error rate and mean burst length. The video quality was predicted in terms of the mean opinion score (MOS). Subjective quality tests were carried out to develop and evaluate the model. The performance of the model was evaluated with unseen dataset with good prediction accuracy $(sim 93%)$. The model also performed well with the LIVE database which was recently made available to the research community. We illustrate the application of the new model in a novel QoE-driven adaptation scheme at the pre-encoding stage in a UMTS network. Simulation results in NS2 demonstrate the effectiveness of the proposed adaptation scheme, especially at the UMTS access network which is a bottleneck. An advantage of the model is that it is light weight (and so it can be implemented for real-time monitoring), and it provides a measure of user-perceived quality, but without requiring time-consuming subjective tests. The model has potential applications in several other areas, including QoE control and optimization in n-
twork planning and content provisioning for network/service providers.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Video Dissemination over Hybrid Cellular and Ad Hoc Networks - 2014 ABSTRACT: We study the problem of disseminating videos to mobile users by using a hybrid cellular and ad hoc network. In particular, we formulate
PROJECT TITLE : Sleep Scheduling for Geographic Routing in Duty-Cycled Mobile Sensor Network - 2014 ABSTRACT: Recently, the research focus on geographic routing, a promising routing scheme in wireless sensor networks (WSNs),
PROJECT TITLE : Security Analysis of Handover Key Management in 4G LTESAE Networks - 2014 ABSTRACT: The goal of 3GPP Long Term Evolution/System Architecture Evolution (LTE/SAE) is to move mobile cellular wireless technology
PROJECT TITLE : Secure and Efficient Data Transmission for Cluster-Based Wireless Sensor Networks - 2014 ABSTRACT: Secure data transmission is a critical issue for wireless sensor networks (WSNs). Clustering is an effective
PROJECT TITLE : R3E Reliable Reactive Routing Enhancement for Wireless Sensor Networks - 2014 ABSTRACT: Providing reliable and efficient communication under fading channels is one of the major technical challenges in wireless

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry