Robust Lane Detection from Continuous Driving ScenesUsing Deep Neural Networks


For autonomous vehicles and sophisticated driver assistance systems, lane recognition in driving scenes is a critical element. Many advanced lane detection algorithms have been presented in recent years. Most approaches, on the other hand, focus on detecting the lane from a single image, which typically results in poor performance when dealing with extreme scenarios like high shadow, severe mark degradation, severe vehicle occlusion, and so on. In actuality, lanes are road structures that run in a continuous line. As a result, the lane that cannot be precisely detected in a single current frame may be inferred by combining data from past frames. To that end, we look at lane detection utilizing numerous frames from a continuous driving environment and present a hybrid deep architecture that combines the convolutional neural network (CNN) and the recurrent neural network (RNN) (RNN). A CNN block abstracts information from each frame, and the CNN features of several continuous frames with time-series properties are subsequently sent into the RNN block for feature learning and lane prediction. Extensive tests on two large-scale datasets show that the proposed method outperforms competing methods in lane detection, particularly in challenging scenarios.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Alzheimers Diseases Detection by Using Deep Learning Algorithms ABSTRACT: Accurate Alzheimer's disease (AD) diagnosis is critical for patient treatment, especially in the early stages of the disease, because
PROJECT TITLE : Deep Learning for Plant Species Classification Using Leaf Vein Morphometric ABSTRACT: Botanists and laypeople alike could benefit from a system that automatically identifies plant species. Deep learning is effective
PROJECT TITLE : Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears ABSTRACT: This study looks into the possibilities of using smartphones to detect malaria parasites in thick blood smears. We've
PROJECT TITLE : Object Detection from Scratch with Deep Supervision ABSTRACT: We propose Deeply Supervised Object Detectors (DSOD) as an object detection framework that can be taught from the ground up in this research. Off-the-shelf
PROJECT TITLE : Use of a Tracer-Specific Deep Artificial Neural Net to Denoise Dynamic PET Images ABSTRACT: The use of kinetic modeling (KM) on a voxel level in dynamic PET pictures frequently results in large amounts of noise,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry