PROJECT TITLE :

Improving fuzzy c-means method for unbalanced dataset

ABSTRACT:

Traditional fuzzy c-means that method (FCM) may be a famous clustering algorithm, but incorporates a poor clustering performance for unbalanced dataset. To tackle this defect, a brand new FCM is presented by introducing cluster size into the formula of determining the membership values in every iteration. Experimental results on synthetic and UCI datasets showed that the proposed method has a better clustering performance than traditional FCM in terms of managing datasets with unbalanced clusters.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Improving I/O Complexity of Triangle Enumeration ABSTRACT: Many graph algorithms are now required to operate in external memory and deliver performance that does not significantly degrade with the scale of the
PROJECT TITLE : Improving Speech Emotion Recognition With Adversarial Data Augmentation Network ABSTRACT: When there aren't many training data to work with, it can be difficult to train a deep neural network without triggering
PROJECT TITLE : A Time-Series Feature-Based Recursive Classification Model to Optimize Treatment Strategies for Improving Outcomes and Resource Allocations of COVID-19 Patients ABSTRACT: This paper presents a novel Lasso Logistic
PROJECT TITLE : Recommender Systems and Scratch An integrated approach for enhancing computer programming learning ABSTRACT: Learning computer programming is a difficult task. Visual programming languages (VPLs), such as Scratch,
PROJECT TITLE : Using Cost-Sensitive Learning and Feature Selection Algorithms to Improve the Performance of Imbalanced Classification ABSTRACT: The problem of unbalanced data is common in network intrusion detection, spam filtering,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry