PROJECT TITLE:

Efficient Integer DCT Architectures for HEVC - 2014

ABSTRACT:

In this project, we present area- and power-efficient architectures for the implementation of integer discrete cosine transform (DCT) of different lengths to be used in High Efficiency Video Coding (HEVC). We show that an efficient constant matrix-multiplication scheme can be used to derive parallel architectures for 1-D integer DCT of different lengths. We also show that the proposed structure could be reusable for DCT of lengths 4, 8, 16, and 32 with a throughput of 32 DCT coefficients per cycle irrespective of the transform size. Moreover, the proposed architecture could be pruned to reduce the complexity of implementation substantially with only a marginal affect on the coding performance. We propose power-efficient structures for folded and full-parallel implementations of 2-D DCT. From the synthesis result, it is found that the proposed architecture involves nearly 14% less area-delay product (ADP) and 19% less energy per sample (EPS) compared to the direct implementation of the reference algorithm, on average, for integer DCT of lengths 4, 8, 16, and 32. Also, an additional 19% saving in ADP and 20% saving in EPS can be achieved by the proposed pruning algorithm with nearly the same throughput rate. The proposed architecture is found to support ultrahigh definition 7680 × 4320 at 60 frames/s video, which is one of the applications of HEVC.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry