PROJECT TITLE:

Statistical Dissemination Control in Large Machine-to-Machine Communication Networks - 2015

ABSTRACT:

Cloud based machine-to-machine (M2M) Communications have emerged to achieve ubiquitous and autonomous data transportation for future daily life in the cyber-physical world. In light of the need of network characterizations, we analyze the connected M2M network in the machine swarm of geometric random graph topology, including degree distribution, network diameter, and average distance (i.e., hops). Without the need of end-to-end information to escape catastrophic complexity, information dissemination appears an effective way in machine swarm. To fully understand practical data transportation, G/G/1 queuing network model is exploited to obtain average end-to-end delay and maximum achievable system throughput. Furthermore, as real applications may require dependable NetWorking performance across the swarm, quality of service (QoS) along with large network diameter creates a new intellectual challenge. We extend the concept of small-world network to form shortcuts among data aggregators as infrastructure-swarm two-tier heterogeneous network architecture, then leverage the statistical concept of network control instead of precise network optimization, to innovatively achieve QoS guarantees. Simulation results further confirm the proposed heterogeneous network architecture to effectively control delay guarantees in a statistical way and to facilitate a new design paradigm in reliable M2M Communications.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Statistical Properties of Transmissions Subject to Rayleigh Fading and Ornstein-Uhlenbeck Mobility ABSTRACT: In this paper, we derive closed-form expressions for significant statistical properties of the link signal-to-noise
PROJECT TITLE : QoS Driven Task Offloading with Statistical Guarantee in Mobile Edge Computing ABSTRACT: Popular mobile applications, such as augmented reality, typically offload the work they need to do on their devices to resource-rich
PROJECT TITLE : Cascaded Composite Turbulence and Misalignment: Statistical Characterization and Applications to Reconfigurable Intelligent Surface-Empowered Wireless Systems ABSTRACT: It is anticipated that high-frequency
PROJECT TITLE : Statistical Nearest Neighbors for Image Denoising ABSTRACT: Non-local-means image denoising is based on processing a reference patch's neighbours. The algorithm's processing overhead can be reduced by using a small
PROJECT TITLE : Estimation, Control and Prediction of Voltage Level and Stability at Receiving Node ABSTRACT: Receiver voltage stability is addressed in this article. Voltage stability and level are intertwined concepts. Although

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry