PROJECT TITLE :

Energy-Efficient Relaying via Store-Carry and Forward within the Cell - 2014

ABSTRACT:

In this paper, store-carry and forward (SCF) decision policies for relaying within the cell are developed. The key motivation of SCF relaying stems from the fact that energy consumption levels can be dramatically reduced by capitalizing on the inherent mobility of nodes and the elasticity of Internet applications. More specifically, we show how the actual mobility of relay nodes can be incorporated as an additional resource in the system to achieve savings in the required Communication energy levels. To this end, we provide a mathematical programming formulation on the aforementioned problem and find optimal routing and scheduling policies to achieve maximum energy savings. By investigating structural properties of the proposed mathematical program we show that optimal solutions can be computed efficiently in time. The tradeoffs between energy and delay in the system are meticulously studied and Pareto efficient curves are derived. Numerical investigations show that the achievable energy gains by judiciously storing and carrying information from mobile relays can grow well above 70 percent for the macrocell scenario when compared to a baseline multihop wireless relaying scheme that uses shortest path routes to the base station.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : RESERVE: An Energy-Efficient Edge Cloud Architecture for Intelligent Multi-UAV ABSTRACT: Multi-unmanned aerial vehicle (MUAV) systems are able to perform tasks such as environmental and disaster monitoring, border
PROJECT TITLE : MAGNETIC: Multi-Agent Machine Learning-Based Approach for Energy Efficient Dynamic Consolidation in Data Centers ABSTRACT: Two of the most significant challenges for effective resource management in large-scale
PROJECT TITLE : An Energy-Efficient Framework for Internet of Things Underlaying Heterogeneous Small Cell Networks ABSTRACT: It has been found that heterogeneous networks that support Long-Term Evolution Advanced (LTE-A) can
PROJECT TITLE :Energy-Efficient Transponder Configuration for FMF-Based Elastic Optical Networks - 2018ABSTRACT:We propose an energy-efficient procedure for transponder configuration in few-mode fiber-based elastic optical networks
PROJECT TITLE :Energy-Efficient Defensive Strategy Against Hybrid SSDF/Eavesdropping Attacks Over Nakagami- m Channels - 2018ABSTRACT:Throughout cooperative spectrum sensing (CSS) in cognitive radio networks, malicious users

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry