PROJECT TITLE :

Scalable and Secure Sharing of Personal Health Records in Cloud Computing Using attribute-Based Encryption - 2013

ABSTRACT:

Personal health record (PHR) is an emerging patient-centric model of health information exchange, which is often outsourced to be stored at a third party, such as cloud providers. However, there have been wide privacy concerns as personal health information could be exposed to those third party servers and to unauthorized parties. To assure the patients' control over access to their own PHRs, it is a promising method to encrypt the PHRs before outsourcing. Yet, issues such as risks of privacy exposure, scalability in key management, flexible access, and efficient user revocation, have remained the most important challenges toward achieving fine-grained, cryptographically enforced data access control. In this paper, we propose a novel patient-centric framework and a suite of mechanisms for data access control to PHRs stored in semitrusted servers. To achieve fine-grained and scalable data access control for PHRs, we leverage attribute-based encryption (ABE) techniques to encrypt each patient's PHR file. Different from previous works in secure data outsourcing, we focus on the multiple data owner scenario, and divide the users in the PHR system into multiple security domains that greatly reduces the key management complexity for owners and users. A high degree of patient privacy is guaranteed simultaneously by exploiting multiauthority ABE. Our scheme also enables dynamic modification of access policies or file attributes, supports efficient on-demand user/attribute revocation and break-glass access under emergency scenarios. Extensive analytical and experimental results are presented which show the security, scalability, and efficiency of our proposed scheme.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Measuring Fitness and Precision of Automatically Discovered Process Models: A Principled and Scalable Approach ABSTRACT: We are able to generate a process model by using automated process discovery techniques,
PROJECT TITLE : ESVSSE Enabling Efficient, Secure, Verifiable Searchable Symmetric Encryption ABSTRACT: It is believed that symmetric searchable encryption, also known as SSE, will solve the problem of privacy in data outsourcing
PROJECT TITLE : Scalable and Practical Natural Gradient for Large-Scale Deep Learning ABSTRACT: Because of the increase in the effective mini-batch size, the generalization performance of the models produced by large-scale distributed
PROJECT TITLE : On Model Selection for Scalable Time Series Forecasting in Transport Networks ABSTRACT: When it comes to short-term traffic predictions, up to the scale of one hour, the transport literature is quite extensive;
PROJECT TITLE : PPD: A Scalable and Efficient Parallel Primal-Dual Coordinate Descent Algorithm ABSTRACT: One of the most common approaches to optimization is called Dual Coordinate Descent, or DCD for short. Due to the sequential

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry