PROJECT TITLE :

Semi supervised Biased Maximum Margin Analysis for Interactive Image Retrieval - 2012

ABSTRACT:

With many potential practical applications, content-based image retrieval (CBIR) has attracted substantial attention during the past few years. A variety of relevance feedback (RF) schemes have been developed as a powerful tool to bridge the semantic gap between low-level visual features and high-level semantic concepts, and thus to improve the performance of CBIR systems. Among various RF approaches, support-vector-machine (SVM)-based RF is one of the most popular techniques in CBIR. Despite the success, directly using SVM as an RF scheme has two main drawbacks. First, it treats the positive and negative feedbacks equally, which is not appropriate since the two groups of training feedbacks have distinct properties. Second, most of the SVM-based RF techniques do not take into account the unlabeled samples, although they are very helpful in constructing a good classifier. To explore solutions to overcome these two drawbacks, in this paper, we propose a biased maximum margin analysis (BMMA) and a semisupervised BMMA (SemiBMMA) for integrating the distinct properties of feedbacks and utilizing the information of unlabeled samples for SVM-based RF schemes. The BMMA differentiates positive feedbacks from negative ones based on local analysis, whereas the SemiBMMA can effectively integrate information of unlabeled samples by introducing a Laplacian regularizer to the BMMA. We formally formulate this problem into a general subspace learning task and then propose an automatic approach of determining the dimensionality of the embedded subspace for RF. Extensive experiments on a large real-world image database demonstrate that the proposed scheme combined with the SVM RF can significantly improve the performance of CBIR systems.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Attention in Reasoning Dataset, Analysis, and Modeling ABSTRACT: Although attention has become an increasingly popular component in deep neural networks for the purpose of both interpreting data and improving
PROJECT TITLE :Cost-Optimal Caching for D2D Networks With User Mobility: Modeling, Analysis, and Computational Approaches - 2018ABSTRACT:Caching well-liked files at the user equipments (UEs) provides an efficient way to alleviate
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Modeling, Analysis, and Scheduling of Cluster Tools With Two Independent ArmsABSTRACT:Twin-armed cluster tools for semiconductor manufacturing sometimes have had two arms fixed in opposite directions. Recently,
PROJECT TITLE :Modeling, Analysis, and Detection of Internal Winding Faults in Power TransformersABSTRACT:The winding interturn fault is critical in power transformers since its result is not simply comprehensible at lower magnitude

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry