Feature choice may be a very necessary part for datamining, machinery learning and pattern recognition. Distance plays a very important role in Support Vector Machines (SVM) theory. Relief-F algorithm solves feature redundancy well but does not guarantee the maximum distance. To overcome this drawback, a feature subset selection algorithm is proposed that takes SVM average distance as estimation rule and sequential forward selection as search strategy. Using public knowledge set acquired from UCI, this algorithm is compared with the Relief-F. The results show that the recognition rate is over Relief-F with smaller selected options under computation quantity tolerant conditions

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Unsupervised Detection of Abnormal Electricity Consumption Behavior Based on Feature Engineering ABSTRACT: In recent years, detecting anomalous electricity usage behavior has become increasingly important. Existing
PROJECT TITLE : Using Cost-Sensitive Learning and Feature Selection Algorithms to Improve the Performance of Imbalanced Classification ABSTRACT: The problem of unbalanced data is common in network intrusion detection, spam filtering,
PROJECT TITLE : Financial Latent Dirichlet Allocation (FinLDA) Feature Extraction in Text and Data Mining for Financial Time Series Prediction ABSTRACT: Many financial time series predictions based on fundamental analysis have
PROJECT TITLE : OFS-NN An Effective Phishing Websites Detection Model Based on Optimal Feature Selection and Neural Network ABSTRACT: Phishing attacks have become a major menace to people's daily lives and social networks. Attackers
PROJECT TITLE : Robust Unsupervised Multi-view Feature Learning with Dynamic Graph ABSTRACT: By modeling the affinity associations with a graph to lower the dimension, graph-based multi-view feature learning algorithms learn a

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry