Learning Multiple Factors-Aware Diffusion Models in Social Networks - 2018


Info diffusion is a natural phenomenon occurring in social networks. The adoption behavior of a node toward an data piece in a very social network can be laid low with completely different factors, e.g., freshness and hotness. Previously, several diffusion models are proposed to think about one or many fastened factors. In fact, the factors affecting adoption call of a node are different from one to another and could not be seen before. For a completely different state of affairs of diffusion with new factors, previous diffusion models could not model the diffusion well, or are not applicable in the slightest degree. Moreover, uncertainty of knowledge exposure intrinsically exists between two connected nodes, which causes modeling diffusion a lot of challenge in social networks. In this work, our aim is to design a diffusion model in which factors thought of are flexible to be extended and modified and the uncertainly of data exposure is explicitly tackled. So, with completely different factors, our diffusion model can be adapted to more scenarios of diffusion while not requiring the modification of the educational framework. We have a tendency to conduct comprehensive experiments to show that our diffusion model is effective on two necessary tasks of information diffusion, specifically activation prediction and unfold estimation.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Multitask Learning Model for Traffic Flow and Speed Forecasting ABSTRACT: Accurate short-term traffic state forecasting is beneficial to Intelligent Transportation Systems (ITS) research and applications. This
PROJECT TITLE : A Supervised Machine Learning Algorithm for Heart Rate Detection Using Doppler Motion-Sensing Radar ABSTRACT: The development of vital sign radar technology has shown to be an effective tool for measuring various
PROJECT TITLE : Alzheimers Diseases Detection by Using Deep Learning Algorithms ABSTRACT: Accurate Alzheimer's disease (AD) diagnosis is critical for patient treatment, especially in the early stages of the disease, because
PROJECT TITLE : An Automated Machine Learning Approach for Smart Waste Management Systems ABSTRACT: This study shows how automated machine learning can be used to solve a real-world problem in a Smart Waste Management system.
PROJECT TITLE : An Explainable Machine Learning Framework for Intrusion Detection Systems ABSTRACT: Machine learning-based intrusion detection systems (IDSs) have proven to be useful in recent years; in particular, deep neural

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry