Mining Competitors from Large Unstructured Datasets - 2017


In any competitive business, success is predicated on the ability to form an item more appealing to customers than the competition. A variety of queries arise within the context of this task: how do we have a tendency to formalize and quantify the competitiveness between two items? Who are the most competitors of a given item? What are the features of an item that the majority affect its competitiveness? Despite the impact and relevance of this problem to several domains, solely a limited amount of work has been devoted toward an effective resolution. In this paper, we tend to gift a proper definition of the competitiveness between 2 things, based mostly available segments that they'll each cowl. Our analysis of competitiveness utilizes customer reviews, an abundant source of information that is out there during a wide selection of domains. We gift efficient strategies for evaluating competitiveness in massive review datasets and address the natural problem of finding the top-k competitors of a given item. Finally, we have a tendency to evaluate the quality of our results and therefore the scalability of our approach using multiple datasets from totally different domains.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Stat-DSM: Statistically Discriminative Sub-Trajectory Mining With Multiple Testing Correction ABSTRACT: We propose a novel statistical approach, which we call Statistically Discriminative Sub-trajectory Mining
PROJECT TITLE : Periodic Communities Mining in Temporal Networks Concepts and Algorithms ABSTRACT: The occurrence of the phenomenon known as periodicity in social interactions within temporal networks is fairly common. Understanding
PROJECT TITLE : Mining High Quality Patterns Using Multi-Objective Evolutionary Algorithm ABSTRACT: The term "pattern mining," or PM for short, refers to the process of extracting from data patterns that are of interest to users.
PROJECT TITLE : Semantics of Data Mining Services in Cloud Computing ABSTRACT: Users now have access to extremely comprehensive data analysis tools that include all of the benefits that come along with working in an environment
PROJECT TITLE : Mining Data Impressions from Deep Models as Substitute for the Unavailable Training Data ABSTRACT: Deep models that have been through training retain their acquired knowledge in the form of model parameters. These

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry