PROJECT TITLE :

Energy-Efficient Strategies for Cooperative Multichannel MAC Protocols

ABSTRACT:

Distributed Information SHaring (DISH) is a new cooperative approach to designing multichannel MAC protocols. It aids nodes in their decision making processes by compensating for their missing information via information sharing through neighboring nodes. This approach was recently shown to significantly boost the throughput of multichannel MAC protocols. However, a critical issue for ad hoc communication devices, viz. energy efficiency, has yet to be addressed. In this paper, we address this issue by developing simple solutions that reduce the energy consumption without compromising the throughput performance and meanwhile maximize cost efficiency. We propose two energy-efficient strategies: in-situ energy conscious DISH, which uses existing nodes only, and altruistic DISH, which requires additional nodes called altruists. We compare five protocols with respect to these strategies and identify altruistic DISH to be the right choice in general: it 1) conserves 40-80 percent of energy, 2) maintains the throughput advantage, and 3) more than doubles the cost efficiency compared to protocols without this strategy. On the other hand, our study also shows that in-situ energy conscious DISH is suitable only in certain limited scenarios.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Energy-Efficient Transponder Configuration for FMF-Based Elastic Optical Networks - 2018ABSTRACT:We propose an energy-efficient procedure for transponder configuration in few-mode fiber-based elastic optical networks
PROJECT TITLE :Energy-Efficient Defensive Strategy Against Hybrid SSDF/Eavesdropping Attacks Over Nakagami- m Channels - 2018ABSTRACT:Throughout cooperative spectrum sensing (CSS) in cognitive radio networks, malicious users
PROJECT TITLE :Energy-Efficient D2D Communications Underlaying NOMA-Based Networks With Energy Harvesting - 2018ABSTRACT:This letter investigates the resource allocation downside in device-to-device (D2D) communications underlaying
PROJECT TITLE :Super-Modular Game-Based User Scheduling and Power Allocation for Energy-Efficient NOMA Network - 2018ABSTRACT:In this Project, we tend to contemplate a single cell downlink non-orthogonal multiple access (NOMA)
PROJECT TITLE :Exploiting Non-Causal CPU-State Information for Energy-Efficient Mobile Cooperative Computing - 2018ABSTRACT:Scavenging the idling computation resources at the large variety of mobile devices, ranging from tiny

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry