In a mobile ad hoc network, nodes that are geographically close may need to compete for exclusive access to a shared resource. This paper proposes an ABSTRACT:

ion of this problem, called local mutual exclusion; it is an extension to mobile networks of the dining philosophers problem, which has been well studied in static networks. The desirable feature of an algorithm for this problem is having response time and failure locality independent of the total number of nodes, thus providing a scalable and robust solution. The paper presents two algorithms, exhibiting trade-offs between simplicity, failure locality and response time. The first algorithm has two variations, one of which has response time that depends very weakly on the number of nodes in the entire system and is polynomial in the maximum number of neighboring nodes; the failure locality, although not optimal, is small and grows very slowly with system size. The second algorithm has optimal failure locality and response time that is quadratic in the number of nodes. A pleasing aspect of the latter algorithm is that when nodes do not move, it has linear response time, improving on previous results for static algorithms with optimal failure locality.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry