Multiple Cycle-in-Cycle Generative Adversarial Networks for Unsupervised Image Super-Resolution


The single picture super-resolution problem has been extensively investigated with the aid of convolutional neural networks (CNN). To map low-resolution (LR) images into high-resolution (HR) images, most of these CNN-based approaches rely on learning a model to downsample an HR picture with an already-known model. However, when the down-sampling method is unclear and the LR input is deteriorated by sounds and blurring, it is impossible to obtain the LR and HR image pairings for classical supervised learning. We propose a multiple Cycle-in-Cycle network structure based on the recent unsupervised imagestyle translation applications using unpaired data, inspired by the recent unsupervised imagestyle translation applications using unpaired data. New network cycles are inserted sequentially in order to super-resolve the intermediate output of the first cycle, which has a well-trained x2 network model in place. The total number of up-sampling cycles varies depending on the various elements (x2, x4, x8). End-to-end training ensures that the desired HR output is achieved. A comparison of our suggested method's quantitative and qualitative outcomes shows that it is on par with the most current supervised models.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : Unsupervised Detection of Abnormal Electricity Consumption Behavior Based on Feature Engineering ABSTRACT: In recent years, detecting anomalous electricity usage behavior has become increasingly important. Existing
PROJECT TITLE : Unsupervised Multi-Discriminator Generative Adversarial Network for Lung Nodule Malignancy Classification ABSTRACT: In the detection of lung cancer, computer-aided diagnosis systems with deep learning frameworks
PROJECT TITLE : Robust Unsupervised Multi-view Feature Learning with Dynamic Graph ABSTRACT: By modeling the affinity associations with a graph to lower the dimension, graph-based multi-view feature learning algorithms learn a
PROJECT TITLE : Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise-Based Markov Random Field Model ABSTRACT: The multimodal change detection (CD) problem in remote sensing imaging is addressed
PROJECT TITLE : Unsupervised Rotation Factorization in Restricted Boltzmann Machines ABSTRACT: Computer vision relies heavily on the ability to select the right images for the task at hand. Rotation-invariant feature learning

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry