PROJECT TITLE :

Hierarchical Tracking by Reinforcement Learning-Based Searching and Coarse-to-Fine Verifying

ABSTRACT:

A class-agnostic tracker typically has three main components, namely its motion model, its target appearance model, and its updating technique. Aside from these complex appearance models and updating methodologies, the most current top-performing trackers tend to focus on relatively simple motion models that may result in an inefficient search and worse tracking performance. Hierarchical tracking is proposed to solve this problem by using data-driven search at the coarse level and fine level verification to learn how to move and track. The coarse location of an object is provided by a data-driven motion model developed using deep recurrent reinforcement learning. As an action-decision issue in reinforcement learning, our tracker uses a deep Q-network based on a recurrent convolutional neural network to learn effective data-driven searching rules for motion searches. In addition to reducing the search space, the motion model developed can also provide more trustworthy interest areas for additional verification. Kernelized correlation filter (KCF)-based appearance model is used to evaluate a local region centred on the projected position from the motion model at the fine level. Circulant matrices and rapid Fourier transforms allow the KCF-based appearance model to efficiently evaluate huge numbers of candidate samples in the local region. Finally, an estimator that is both simple and reliable is created to assess the likelihood of tracking failure. That our tracker performs better than current trackers may be demonstrated by the results of our tests on OTB50 and OTB100.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Reinforcement Learning-based Collision Avoidance and Optimal Trajectory Planning in UAV Communication Networks ABSTRACT: In this paper, we investigate optimal trajectory planning for unmanned aerial vehicle (UAV)
PROJECT TITLE : Efficient Provision of Service Function Chains in Overlay Networks using Reinforcement Learning ABSTRACT: The technologies of Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) make it
PROJECT TITLE : Traffic Signal Control Using End-to-End Off-Policy Deep Reinforcement Learning ABSTRACT: However, road intersections have historically been among the most significant traffic bottlenecks that have contributed
PROJECT TITLE : Physics Informed Deep Reinforcement Learning for Aircraft Conflict Resolution ABSTRACT: It is proposed that physics-informed deep reinforcement learning (RL) can be used to devise an innovative approach to the
PROJECT TITLE : Software-Defined Vehicular Networks With Trust Management A Deep Reinforcement Learning Approach ABSTRACT: The proper design of a vehicular ad hoc network, also known as a VANET, has become an essential component

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry