Relative CNN-RNN Learning Relative Atmospheric Visibility From Images


This paper proposes a deep learning strategy for directly predicting the relative air visibility from outside shots without having to rely on pricey weather images or data. In order to learn about a wide range of scene and visibility variations, our data-driven approach uses a big collection of Internet photographs. Using the relative support vector machine, which has a good ranking representation, and the data-driven deep learning features derived from our novel CNN-RNN model, we developed the relative CNN-RNN coarse-to-fine model, where CNN stands for convolutional neural network and RNN stands for recurrent neural network. It is possible to connect a coarse-to-fine RNN with a CNN via shortcut connections. Global view is captured by CNN, while RNN demonstrates how humans move their focus from the entire image to the most distantly perceived location (local). This relative model can be used to forecast absolute visibility in certain situations. We conduct a wide range of tests and comparisons to ensure the validity of our process. An annotated collection of roughly 40000 photos and 0.2 million human annotations has been constructed. This publication will be accompanied with a large-scale, annotated visibility dataset.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE : A Multitask Learning Model for Traffic Flow and Speed Forecasting ABSTRACT: Accurate short-term traffic state forecasting is beneficial to Intelligent Transportation Systems (ITS) research and applications. This
PROJECT TITLE : A Supervised Machine Learning Algorithm for Heart Rate Detection Using Doppler Motion-Sensing Radar ABSTRACT: The development of vital sign radar technology has shown to be an effective tool for measuring various
PROJECT TITLE : Alzheimers Diseases Detection by Using Deep Learning Algorithms ABSTRACT: Accurate Alzheimer's disease (AD) diagnosis is critical for patient treatment, especially in the early stages of the disease, because
PROJECT TITLE : An Automated Machine Learning Approach for Smart Waste Management Systems ABSTRACT: This study shows how automated machine learning can be used to solve a real-world problem in a Smart Waste Management system.
PROJECT TITLE : An Explainable Machine Learning Framework for Intrusion Detection Systems ABSTRACT: Machine learning-based intrusion detection systems (IDSs) have proven to be useful in recent years; in particular, deep neural

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry