Fusion based variational image dehazing - 2017


We have a tendency to propose a unique image-dehazing technique based on the minimization of two energy functionals and a fusion theme to combine the output of each optimizations. The proposed fusion-based variational image-dehazing (FVID) technique may be a spatially varying image enhancement process that first minimizes a previously proposed variational formulation that maximizes distinction and saturation on the hazy input. The iterates created by this minimization are kept, and a second energy that shrinks faster intensity values of well-contrasted regions is minimized, permitting to come up with a collection of distinction-of-saturation (DiffSat) maps by observing the shrinking rate. The iterates created in the first minimization are then fused with these DiffSat maps to provide a haze-free version of the degraded input. The FVID methodology will not depend on a physical model from that to estimate a depth map, nor it wants a training stage on a database of human-labeled examples. Experimental results on a large set of hazy images demonstrate that FVID higher preserves the image structure on nearby regions that are less affected by fog, and it's successfully compared with other current ways in the task of removing haze degradation from faraway regions.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Optimal Sequential Fusion Estimation With Stochastic Parameter Perturbations, Fading Measurements, and Correlated Noises - 2018ABSTRACT:This Project focuses on the linear optimal recursive sequential fusion filter
PROJECT TITLE :Color Balance and Fusion for Underwater Image Enhancement - 2018ABSTRACT:We tend to introduce an efficient technique to reinforce the photographs captured underwater and degraded because of the medium scattering
PROJECT TITLE :SLAC: Calibration-Free Pedometer-Fingerprint Fusion for Indoor Localization - 2018ABSTRACT:To improve the accuracy of fingerprint-based mostly localization, one could fuse step counterwith fingerprints. However,
PROJECT TITLE :Image Co-Saliency Detection Via Locally Adaptive Saliency Map Fusion - 2017ABSTRACT:Co-saliency detection aims at discovering the common and salient objects in multiple pictures. It explores not solely intra-image
PROJECT TITLE : Blind image quality assessment based on Multichannel features fusion and label transfer - 2016 ABSTRACT: In this paper, we have a tendency to propose an efficient blind image quality assessment (BIQA) algorithm,

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry