PROJECT TITLE :

Hierarchical Graphical Models for Simultaneous Tracking and Recognition in Wide-Area Scenes - 2015

ABSTRACT:

We tend to present a unified framework to trace multiple individuals, likewise localize, and label their activities, in complex long-duration video sequences. To do this, we specialize in 2 aspects: 1) the influence of tracks on the activities performed by the corresponding actors and a couple of) the structural relationships across activities. We tend to propose a two-level hierarchical graphical model, that learns the connection between tracks, relationship between tracks, and their corresponding activity segments, as well as the spatiotemporal relationships across activity segments. Such contextual relationships between tracks and activity segments are exploited at both the amount within the hierarchy for increased robustness. An L1-regularized structure learning approach is proposed for this purpose. While it's well known that availability of the labels and locations of activities can help in determining tracks a lot of accurately and vice-versa, most current approaches have addressed these issues separately. Inspired by analysis in the realm of biological vision, we have a tendency to propose a bidirectional approach that integrates each bottom-up and prime-down processing, i.e., bottom-up recognition of activities using computed tracks and prime-down computation of tracks using the obtained recognition. We demonstrate our results on the recent and publicly offered UCLA and VIRAT data sets consisting of realistic indoor and outdoor surveillance sequences.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Exploiting Related and Unrelated Tasks for Hierarchical Metric Learning and Image Classification ABSTRACT: Multiple connected activities are taught together in order to improve performance in multi-task learning.
PROJECT TITLE : DeepCrack Learning Hierarchical Convolutional Features for Crack Detection ABSTRACT: Many computer-vision programmes are attracted to the usual line formations known as cracks. Image-based fracture detection using
PROJECT TITLE : Hierarchical Features Driven Residual Learning for Depth Map Super-Resolution ABSTRACT: Computer vision activities such as intelligent cars and 3D reconstruction can be made easier by the rapid development of inexpensive
PROJECT TITLE : Hierarchical Tracking by Reinforcement Learning-Based Searching and Coarse-to-Fine Verifying ABSTRACT: A class-agnostic tracker typically has three main components, namely its motion model, its target appearance
PROJECT TITLE : Moving Object Detection in Video via Hierarchical Modeling and Alternating Optimization ABSTRACT: Traditionally, video modelling experts believe that the background is the primary focus, and the foreground is created

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry