ABSTRACT:

Cloud Computing enables customers with limited computational resources to outsource large-scale computational tasks to the cloud, where massive computational power can be easily utilized in a pay-per-use manner. However, security is the major concern that prevents the wide adoption of computation outsourcing in the cloud, especially when end-user's confidential data are processed and produced during the computation. Thus, secure outsourcing mechanisms are in great need to not only protect sensitive information by enabling computations with encrypted data, but also protect customers from malicious behaviors by validating the computation result. Such a mechanism of general secure computation outsourcing was recently shown to be feasible in theory, but to design mechanisms that are practically efficient remains a very challenging problem. Focusing on engineering computing and optimization tasks, this paper investigates secure outsourcing of widely applicable linear programming (LP) computations. In order to achieve practical efficiency, our mechanism design explicitly decomposes the LP computation outsourcing into public LP solvers running on the cloud and private LP parameters owned by the customer. The resulting flexibility allows us to explore appropriate security/efficiency tradeoff via higher-level abstraction of LP computations than the general circuit representation. In particular, by formulating private data owned by the customer for LP problem as a set of matrices and vectors, we are able to develop a set of efficient privacy-preserving problem transformation techniques, which allow customers to transform original LP problem into some random one while protecting sensitive input/output information. To validate the computation result, we further explore the fundamental duality theorem of LP computation and derive the necessary and sufficient conditions that correct result must satisfy. Such result verification mechanism is extremely efficient and incurs close-t- - o-zero additional cost on both cloud server and customers. Extensive security analysis and experiment results show the immediate practicability of our mechanism design.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Fast and Secure Distributed Nonnegative Matrix Factorization ABSTRACT: The nonnegative matrix factorization (NMF) technique has been utilized effectively in a number of different data mining activities. Because
PROJECT TITLE : ESVSSE Enabling Efficient, Secure, Verifiable Searchable Symmetric Encryption ABSTRACT: It is believed that symmetric searchable encryption, also known as SSE, will solve the problem of privacy in data outsourcing
PROJECT TITLE : Secure Cloud Data Deduplication with Efficient Re-encryption ABSTRACT: The data deduplication technique has seen widespread adoption among commercial cloud storage providers, which is both important and necessary
PROJECT TITLE : Novel Secure Outsourcing of Modular Inversion for Arbitrary and Variable Modulus ABSTRACT: In the fields of cryptography and algorithmic number theory, modular inversion is regarded as one of the operations that
PROJECT TITLE : Forward Secure Public Key Encryption with Keyword Search for Outsourced Cloud Storage ABSTRACT: Cloud storage has become a primary industry in remote data management services, but it also attracts security concerns.

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry