ABSTRACT:

Object recognition and categorization are computationally difficult tasks that are performed effortlessly by humans. Attempts have been made to emulate the computations in different parts of the primate cortex to gain a better understanding of the cortex and to design brain–machine interfaces that speak the same language as the brain. The HMAX model proposed by Riesenhuber and Poggio and extended by Serre attempts to truly model the visual cortex. In this paper, we provide a spike-based implementation of the HMAX model, demonstrating its ability to perform biologically-plausible MAX computations as well as classify basic shapes. The spike-based model consists of 2514 neurons and 17$thinspace$305 synapses (S1 Layer: 576 neurons and 7488 synapses, C1 Layer: 720 neurons and 2880 synapses, S2 Layer: 576 neurons and 1152 synapses, C2 Layer: 640 neurons and 5760 synapses, and Classifier: 2 neurons and 25 synapses). Without the limits of the retina model, it will take the system 2 min to recognize rectangles and triangles in 24$,times,$24 pixel images. This can be reduced to 4.8 s by rearranging the lookup table so that neurons which have similar responses to the same input(s) can be placed on the same row and affected in parallel.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Local Multimodal Serial Analysis for Fusing EEG-fMRI: A New Method to Study Familial Cortical Myoclonic Tremor and EpilepsyABSTRACT:Integrating information of neuroimaging multimodalities, like electroencephalography
PROJECT TITLE :Characterization of Two-Turns External Loop Antenna With Magnetic Core for Efficient Wireless Powering of Cortical ImplantsABSTRACT:We present a two-turns loop antenna with a magnetic core to transfer power wirelessly
PROJECT TITLE :Holistic Atlases of Functional Networks and Interactions Reveal Reciprocal Organizational Architecture of Cortical FunctionABSTRACT:For decades, it has been largely unknown to what extent multiple practical networks
PROJECT TITLE :Patient-Specific Cortical Electrodes for Sulcal and Gyral ImplantationABSTRACT:Purpose: Noninvasive localization of bound brain functions might be mapped on a millimetre level. However, the interelectrode spacing
PROJECT TITLE :Modelling the role of catastrophe, crossover and katanin-mediated severing in the self-organisation of plant cortical microtubulesABSTRACT:Plant cortical microtubules will type ordered arrays through interactions

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry