ABSTRACT:

New paradigms for brain–computer interfacing (BCI), such as based on imagination of task characteristics, require long training periods, have limited accuracy, and lack adaptation to the changes in the users' conditions. Error potentials generated in response to an error made by the translation algorithm can be used to improve the performance of a BCI, as a feedback extracted from the user and fed into the BCI system. The present study addresses the inclusion of error potentials in a BCI system based on the decoding of movement-related cortical potentials (MRCPs) associated to the speed of a task. First, we theoretically quantified the improvement in accuracy of a BCI system when using error potentials for correcting the output decision, in the general case of multiclass BCI. The derived theoretical expressions can be used during the design phase of any BCI system. They were applied to experimentally estimated accuracies in decoding MRCPs and error potentials. Second we studied in simulation the performance of the closed-loop system in order to evaluate its ability to adapt to the changes in the mental states of the user. By setting the parameters of the simulator to experimentally determined values, we showed that updating the learning set with the examples estimated as correct based on the decoding of error potentials leads to convergence to the optimal solution.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Predicting Detection Performance on Security X-Ray Images as a Function of Image Quality ABSTRACT: Research into how image quality impacts work performance is a hot topic in many industries. The security X-ray
PROJECT TITLE : A Novel Control Scheme for Enhancing the Transient Performance of an Islanded Hybrid AC-DC Microgrid ABSTRACT: In this research, we present an innovative supplementary feature for increasing the transient performance
PROJECT TITLE : A High Performance Shade-Tolerant MPPT Based on Current-Mode Control ABSTRACT: For photovoltaic (PV) applications, a high-performance shade-tolerant maximum power point tracking (STMPPT) technique is proposed.
PROJECT TITLE : Applying Reactive Power Compensators to Large Wind Farms to improve ABSTRACT: With the advancement of wind power production technology, investment in wind farm building has increased, and the effects of parallel
PROJECT TITLE : Dynamic Performance of Solar PV Integrated UPQC-P for Critical Loads ABSTRACT: These results demonstrate the dynamic performance of an integrated UPQC-P array for critical loads, including a solar photovoltaic

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry