ABSTRACT:

Past work on automatic analysis of facial expressions has focused mostly on detecting prototypic expressions of basic emotions like happiness and anger. The method proposed here enables the detection of a much larger range of facial behavior by recognizing facial muscle actions [action units (AUs)] that compound expressions. AUs are agnostic, leaving the inference about conveyed intent to higher order decision making (e.g., emotion recognition). The proposed fully automatic method not only allows the recognition of 22 AUs but also explicitly models their temporal characteristics (i.e., sequences of temporal segments: neutral, onset, apex, and offset). To do so, it uses a facial point detector based on Gabor-feature-based boosted classifiers to automatically localize 20 facial fiducial points. These points are tracked through a sequence of images using a method called particle filtering with factorized likelihoods. To encode AUs and their temporal activation models based on the tracking data, it applies a combination of GentleBoost, support vector machines, and hidden Markov models. We attain an average AU recognition rate of 95.3% when tested on a benchmark set of deliberately displayed facial expressions and 72% when tested on spontaneous expressions.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Fully and Partially Distributed Incentive Mechanism for a Mobile Edge Computing Network ABSTRACT: Computing at the network's edge has emerged as a significant focus of recent networking research. The exponential
PROJECT TITLE : Fully Dynamic kk-Center Clustering With Improved Memory Efficiency ABSTRACT: Any machine learning library worth its salt will include both static and dynamic clustering algorithms as core components. The sliding
PROJECT TITLE : Fully Dynamic k-Center Clustering with Improved Memory Efficiency ABSTRACT: Any machine learning library worth its salt will include both static and dynamic clustering algorithms as core components. The sliding
PROJECT TITLE : One-View Occlusion Detection for Stereo Matching With a Fully Connected CRF Modelí_ ABSTRACT: A belief propagation (BP) sequential method described in the tree-reweighted sequential method is extended to completely
PROJECT TITLE :Translating Algorithms to Handle Fully Homomorphic Encrypted Data on the Cloud - 2018ABSTRACT:Cloud provides giant shared resources where users (or foundations) can get pleasure from the facility of storing data

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry