PROJECT TITLE :

Learning of Fuzzy Cognitive Maps Using Density Estimate

ABSTRACT:

Fuzzy cognitive maps (FCMs) are convenient and widely used architectures for modeling dynamic systems, which are characterized by a great deal of flexibility and adaptability. Several recent works in this area concern strategies for the development of FCMs. Although a few fully automated algorithms to learn these models from data have been introduced, the resulting FCMs are structurally considerably different than those developed by human experts. In particular, maps that were learned from data are much denser (with the density over 90% versus about 40% density of maps developed by humans). The sparseness of the maps is associated with their interpretability: the smaller the number of connections is, the higher is the transparency of the map. To this end, a novel learning approach, sparse real-coded genetic algorithms (SRCGAs), to learn FCMs is proposed. The method utilizes a density parameter to guide the learning toward a formation of maps of a certain predefined density. Comparative tests carried out for both synthetic and real-world data demonstrate that, given a suitable density estimate, the SRCGA method significantly outperforms other state-of-the-art learning methods. When the density estimate is unknown, the new method can be used in an automated fashion using a default value, and it is still able to produce models whose performance exceeds or is equal to the performance of the models generated by other methods.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Robust Fuzzy Learning for Partially Overlapping Channels Allocation in UAV Communication Networks ABSTRACT: The emerging cellular-enabled unmanned aerial vehicle (UAV) communication paradigm poses significant challenges
PROJECT TITLE : Revenue-Optimal Auction For Resource Allocation in Wireless Virtualization: A Deep Learning Approach ABSTRACT: Virtualization of wireless networks has emerged as an essential component of future cellular networks.
PROJECT TITLE : Multi-hop Deflection Routing Algorithm Based on Reinforcement Learning for Energy-Harvesting Nanonetworks ABSTRACT: Nanonetworks are made up of nano-nodes that interact with one another, and the size of these nano-nodes
PROJECT TITLE : Memory-Aware Active Learning in Mobile Sensing Systems ABSTRACT: A novel active learning framework for activity recognition utilizing wearable sensors is presented here. When deciding which sensor data should be
PROJECT TITLE : Imitation Learning Enabled Task Scheduling for Online Vehicular Edge Computing ABSTRACT: The term "vehicular edge computing" (VEC) refers to a potentially useful paradigm that is based on the Internet of vehicles

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry