Scale and orientation adaptive mean shift tracking ABSTRACT:A scale and orientation adaptive mean shift tracking (SOAMST) algorithm is proposed in this study to address the problem of how to estimate the scale and orientation changes of the target under the mean shift tracking framework. In the original mean shift tracking algorithm, the position of the target can be well estimated, whereas the scale and orientation changes cannot be adaptively estimated. Considering that the weight image derived from the target model and the candidate model can represent the possibility that a pixel belongs to the target, the authors show that the original mean shift tracking algorithm can be derived using the zeroth- and the first-order moments of the weight image. With the zeroth-order moment and the Bhattacharyya coefficient between the target model and candidate model, a simple and effective method is proposed to estimate the scale of target. Then an approach, which utilises the estimated area and the second-order centre moment, is proposed to adaptively estimate the width, height and orientation changes of the target. Extensive experiments are performed to testify the proposed method and validate its robustness to the scale and orientation changes of the target. Did you like this research project? To get this research project Guidelines, Training and Code... Click Here facebook twitter google+ linkedin stumble pinterest Robust mean-shift tracking with corrected background-weighted histogram Multiview geometry in traditional vision and omnidirectional vision under the l∞-norm