ABSTRACT:

Simulations of turbulent flames have used particles to capture the dynamic behavior of combustion in next-generation engines. Each particle includes a history of its movement positions and changing thermochemical states. Analyzing such a set of many millions of particles helps scientists understand turbulence. A dual-space method enables effective visual analysis of both the spatial movement and attribute evolution of particles. A cluster-label-classify strategy categorizes particles' attribute evolution curves. Intuitive tools integrate users' domain knowledge to steer the classification. The dual-space method has been used to analyze particle data in combustion simulations and can be applied to other scientific simulations involving particle-data analysis. This video shows an expository movie that combustion scientists have used when discussing their simulation results with colleagues. This simulation employs visual analysis in both the physical space and phase space, with categorization driven by supervised learning.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE : Deep Spatial and Temporal Network for Robust Visual Object Tracking ABSTRACT: For visual tracking, there are two crucial components: (a) the appearance of the object and (b) the motion of the object. Since deep
PROJECT TITLE : Visual Correspondences for Unsupervised Domain Adaptation on Electron Microscopy Images ABSTRACT: For Electron Microscopy volumes, we provide an Unsupervised Domain Adaptation approach. Pretrained models are able
PROJECT TITLE : A Blind Stereoscopic Image Quality Evaluator With Segmented Stacked Autoencoders Considering the Whole Visual Perception Route ABSTRACT: Blind stereoscopic image quality assessment (SIQA) methods currently in use
PROJECT TITLE : Deep Visual Saliency on Stereoscopic Images ABSTRACT: Quality of stereoscopic 3D images has been demonstrated to have a significant impact on visual saliency in S3D images. As a result, this dependency is critical
PROJECT TITLE : Fundamental Visual Concept Learning From Correlated Images and Textí_ ABSTRACT: The visual notions in heterogeneous web media, such as objects, situations, and activities, cannot be dissected semantically. Learning

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry