In this paper, we investigate the throughput capacity of large-scale wireless networks, in which three network-assisted coding schemes are considered: (1) multi-point-to-point coding (MPPC); (2) MPPC based network coding (NC); and (3) MPPC based physical-layer network coding (PLNC). This study is based on the generalized physical model, in which the transmission rate depends on the signal to noise and interference ratio (SINR). Such a model has not been used to analyze the behaviors of large-scale wireless networks with the aforementioned coding schemes. To understand the capacity gains of these schemes, we develop constructive lower bounds for one-dimensional (1D) and two-dimensional (2D) networks with size factor w, in which we construct novel wireless highway systems. This study shows that, compared to point-to-point coding (PPC), MPPC can improve the scaling law of network capacity when w exceeds a certain scale. In addition, this study reveals that MPPC based NC and PLNC can improve the capacity by constant factors. Specifically, NC can always obtain a gain of 2 in both 1D and 2D networks. On the other hand, the gain of PLNC can be larger than 2 in 1D networks, and can be up to 2 in 2D networks, depending on w, transmission power, noise, and path-loss of propagation.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :DCAP: Improving the Capacity of WiFi Networks with Distributed Cooperative Access Points - 2018ABSTRACT:This Project presents the Distributed Cooperative Access Points (DCAP) system that may simultaneously serve
PROJECT TITLE :Improving Error Correction Codes for Multiple-Cell Upsets in Space Applications - 2018ABSTRACT:Currently, faults suffered by SRAM memory systems have increased because of the aggressive CMOS integration density.
PROJECT TITLE :Improving Lifetime of Fuel Cell in Hybrid Energy Management System by Lure-Lyapunov Based Control Formulation - 2017ABSTRACT:Fuel cell (FC) is emerging as a clean and nonpollutant energy source and is being used
PROJECT TITLE : Further Improving Efficiency of Higher-Order Masking Schemes by Decreasing Randomness Complexitys - 2017 ABSTRACT: Most cryptographic implementations are prone to side-channel attacks. Among the countermeasures,
PROJECT TITLE : Survey on Improving Data Utility in Differentially Private Sequential Data Publishing - 2017 ABSTRACT: The large generation, intensive sharing, and deep exploitation of knowledge in the massive knowledge era

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry