An Efficient Successive Relaying Protocol for Multiple-Relay Cooperative Networks


We propose an efficient successive relaying (SR) transmission protocol for multiple-relay cooperative systems under the half-duplex constraint. In this protocol, the process of relay selection is conducted once the instantaneous channel state information changes. During each channel coherent interval, the source keeps transmitting newly generated messages, and two selected relays successively decode and forward the source's information to the destination. In particular, in one time slot, a selected relay jointly decodes both signals transmitted from the source and the other selected relay. In the next time slot, this relay forwards the superposition of these two decoded signals. The destination jointly decodes messages at the end of each interval. The lower bound of outage probability is derived in a closed-form expression and the diversity-multiplexing trade-off (DMT) performance is characterized as well. It is demonstrated by the numerical results that the proposed SR protocol is capable of achieving both full diversity gain and high multiplexing gain.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Efficient Secure Outsourcing of Large-Scale Sparse Linear Systems of Equations - 2018ABSTRACT:Solving large-scale sparse linear systems of equations (SLSEs) is one in all the foremost common and basic problems in
PROJECT TITLE :Distributed Feature Selection for Efficient Economic Big Data Analysis - 2018ABSTRACT:With the rapidly increasing popularity of economic activities, a large amount of economic data is being collected. Although
PROJECT TITLE :Efficient Wideband DOA Estimation Through Function Evaluation Techniques - 2018ABSTRACT:This Project presents an economical analysis methodology for the functions involved within the computation of direction-of-arrival
PROJECT TITLE :Efficient System Tracking With Decomposable Graph-Structured Inputs and Application to Adaptive Equalization With Cyclostationary Inputs - 2018ABSTRACT:This Project introduces the graph-structured recursive least
PROJECT TITLE :Efficient Partial-Sum Network Architectures for List Successive-Cancellation Decoding of Polar Codes - 2018ABSTRACT:List successive cancellation decoder (LSCD) architectures have been recently proposed for the decoding

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry