ABSTRACT:

This paper presents a fast and precise electromagnetic–thermal model of a redundant dual-star flux-switching permanent-magnet (FSPM) motor for embedded applications with driving cycles, e.g., hybrid electrical vehicle (HEV) and aerospace. This model is based on a prior steady characterization by finite-element method (FEM) 2-D of the FSPM motor via calculating the instantaneous torque and the normal and tangential components of the magnetic flux density ($B_{r}$ and $B_{theta}$) of each element of the stator and the rotor for different root-mean-square (RMS) current densities and different rotor positions. These results are then used in the analytical copper and iron loss models for calculating the instantaneous copper and rotor and stator iron losses during one driving cycle. The lumped-parameter (LP) and finite-element 2-D transient thermal models are then carried out, in which the previously obtained instantaneous power losses are used as heat sources for calculating the temperatures of different motor parts during driving cycles. In the thermal studies, a transformation of an irregular slot structure into a regular (rectangular) one is applied to simplify the calculation of the winding thermal resistance. The thermal–electromagnetic analysis method in this paper can also be extended for all the other applications with driving cycles. The experimental tests are carried out to validate the analytical and numerical results.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Cost-Optimal Caching for D2D Networks With User Mobility: Modeling, Analysis, and Computational Approaches - 2018ABSTRACT:Caching well-liked files at the user equipments (UEs) provides an efficient way to alleviate
PROJECT TITLE :Design, Analysis, and Implementation of ARPKI: An Attack-Resilient Public-Key Infrastructure - 2018ABSTRACT:This Transport Layer Security (TLS) Public-Key Infrastructure (PKI) is based on a weakest-link security
PROJECT TITLE :Simulation, Analysis, and Verification of Substrate Currents for Layout Optimization of Smart Power ICsABSTRACT:Today circuit failures in Smart Power ICs because of substrate couplings are partially addressed during
PROJECT TITLE :Modeling, Analysis, and Scheduling of Cluster Tools With Two Independent ArmsABSTRACT:Twin-armed cluster tools for semiconductor manufacturing sometimes have had two arms fixed in opposite directions. Recently,
PROJECT TITLE :Modeling, Analysis, and Detection of Internal Winding Faults in Power TransformersABSTRACT:The winding interturn fault is critical in power transformers since its result is not simply comprehensible at lower magnitude

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry