A reliable robust wireless network of connected vehicles is desired to enable a number of future telematics and infotainment applications in the vehicular domain. To achieve this objective, vehicle-to-vehicle (V2V) communication is standardized by the IEEE 802.11p Dedicated Short Range Communications (DSRC) standard. Providing reliable communication performance in a highly dynamic time-varying V2V channel is a challenging task. To tackle this challenge, we propose a dynamic equalization scheme, on top of the existing DSRC technology, that significantly improves the packet error rate (PER) of data transmissions without changing the DSRC standard. We also show a hardware implementation of this scheme based on a field-programmable gate array (FPGA) to demonstrate its implementation feasibility. Furthermore, we extend our improved equalization scheme to various data rate options available in the DSRC standard, showing that the proposed scheme is sufficiently generic to support different types of V2V communication. Finally, we report the results of investigating the dependence of wireless communication performance (in terms of PER and throughput) on various design parameters such as packet length, payload size, and data rate.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Performance Improvement of Grid Integrated SolarPV System using DNLMS Control AlgorithmABSTRACT:An integration of renewable sources based distributed generating systems encounters various power quality issues because
PROJECT TITLE :A Machine Learning Approach for Tracking and Predicting Student Performance in Degree Programs - 2018ABSTRACT:Accurately predicting students' future performance based on their ongoing academic records is crucial
PROJECT TITLE :CaL: Extending Data Locality to Consider Concurrency for Performance Optimization - 2018ABSTRACT:Massive information applications demand a higher memory performance. Information Locality has been the main target
PROJECT TITLE :Performance Analysis of Sequential Detection of Primary User Number Based on Multihypothesis Sequential Probability Ratio Test - 2018ABSTRACT:In cognitive radio networks, a priori data on the quantity of primary
PROJECT TITLE :Performance Analysis of a New Calibration Method for Fiber Nonlinearity Compensation - 2018ABSTRACT:Digital signal processing for fiber nonlinearity compensation could be a key enabler for the ever-increasing demand

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry