Synchronization among primary users (PUs) and secondary users (SUs) is either explicitly or implicitly assumed in the literature to allow reliable dynamic spectrum access (DSA) and cognitive radio (CR) networking. However, in realistic DSA that supports ad-hoc transmissions, perfect synchronization is not attainable in the absence of a centralized control mechanism, particularly among SUs. Current efforts either ideally assume perfect synchronization among PUs and SUs or consider medium access that does not require network synchronization based on a single SU. In this paper, we propose an implementable asynchronous DSA scheme by practically considering the timing misalignment with multiple SUs competing for the spectrum opportunity. We further employ a game theoretical framework in asynchronous DSA to thoroughly predict the competition among SUs. Based on the equilibrium concept, we identify the feasible operating region, achieving optimal equilibrium that is not only reaching a win–win situation in the sense of PU throughput and spectrum utilization maximization but is robust to potential selfish behavior of SUs as well. Both low-complexity one-shot and sequential-decision access schemes are analyzed. We demonstrate that, when operating in the proposed feasible region, contrary to intuitive conjecture, the asynchronous DSA achieves surprising improvement in spectrum utilization.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Asynchronous Incremental Stochastic Dual Descent Algorithm for Network Resource Allocation - 2018ABSTRACT:Stochastic network optimization problems entail finding resource allocation policies that are optimum on
PROJECT TITLE :Asynchronous Stochastic Approximation Based Learning Algorithms for As-You-Go Deployment of Wireless Relay Networks Along a Line - 2018ABSTRACT:We are motivated by the need, in emergency situations, for impromptu
PROJECT TITLE :Dynamic, Fine-Grained Data Plane Monitoring With Monocle - 2018ABSTRACT:Ensuring network reliability is important for satisfying service-level objectives. However, diagnosing network anomalies during a timely fashion
PROJECT TITLE :Sense Amplifier Half-Buffer (SAHB): A Low-Power High-Performance Asynchronous Logic QDI Cell Template - 2017ABSTRACT:We tend to propose a completely unique asynchronous logic (async) quasi-delay-insensitive (QDI)
PROJECT TITLE :Research of Varying Frequency Driving Scheme for Asynchronous Induction Coil Launcher - 2017ABSTRACT:There are few of transient management models are tailored to asynchronous induction coil launcher (AICL) with

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry