PROJECT TITLE :

Capacity Bounds for AF Dual-hop Relaying in Fading Channels

ABSTRACT:

We investigate the ergodic capacity of amplify-and-forward (AF) dual-hop relaying systems in composite Nakagami-$m$/inverse-Gaussian fading channels. This type of fading, which is known in the literature as ${cal G}$ fading, has recently attracted increasing research interest due to its ability to better approximate the Nakagami- $m$/lognormal model, compared with the Nakagami- $m$/gamma model. We study both fixed- and variable-gain relaying systems and present analytical upper and lower bounds for the ergodic capacity of dual-hop relaying systems with not necessarily identical hops; these bounds provide an efficient means to evaluate the ergodic capacity of AF dual-hop relaying systems over ${cal G}$ fading channels. We also establish sufficient conditions for the existence of the bounds, depending on the values of the fading parameters. In both cases, our simulation results demonstrate that the proposed upper and lower bounds remain relatively tight for different fading conditions.


Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here


PROJECT TITLE :Capacity Maximizing Adaptive Power Splitting Protocol for Cooperative Energy Harvesting Communication Systems - 2018ABSTRACT:In this letter, we have a tendency to propose a unique power splitting (PS) protocol
PROJECT TITLE :The Spatial Outage Capacity of Wireless Networks - 2018ABSTRACT:We tend to address a fundamental question in wireless networks that, surprisingly, has not been studied before: what's the utmost density of concurrently
PROJECT TITLE :Capacity Bounds and High-SNR Capacity of MIMO Intensity-Modulation Optical Channels - 2018ABSTRACT:The capability of the intensity modulation direct detection multiple-input-multiple-output channel is studied. Therein,
PROJECT TITLE :Capacity and Delay Tradeoff of Secondary Cellular Networks With Spectrum Aggregation - 2018ABSTRACT:Cellular communication networks are plagued with redundant capacity, which results in low utilization and value-effectiveness
PROJECT TITLE :DCAP: Improving the Capacity of WiFi Networks with Distributed Cooperative Access Points - 2018ABSTRACT:This Project presents the Distributed Cooperative Access Points (DCAP) system that may simultaneously serve

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry