Recently, peer-to-peer video streaming technology has been widely suggested to support broadcasting videos over the Internet. Given that the application-layer nodes (peers) are autonomous and may join or leave at will. Dealing with node dynamics (known as churn) under the bandwidth and timing constraints for video streaming thus becomes a necessary yet challenging task. One conventional argument is that the stable nodes are too small a group to be effectively utilized. While we agree this argument from a whole session's point-of-view, in this paper, we argue that the significantly longer lifespans of the stable nodes allow each of them to appear in much more snapshots of the overlay than transient nodes and, as a result, they constitute a significant portion in every snapshot of the overlay, substantially affecting the performance of the overall system. Such observation has been verified by our trace analysis on PPLive, a large-scale peer-to-peer live streaming system, as well as analytical modeling based on node behaviors. Motivated by this, we further propose a tiered overlay design, with stable nodes being organized into a tier-1 backbone for serving tier-2 nodes. It offers a highly cost-effective and deployable alternative to proxy assisted designs. We develop a comprehensive set of algorithms for stable node identification and organization. Specifically, we present a novel structure, labeled tree (or LBTree in short), for the tier-1 overlay, which, leveraging stable peers, simultaneously achieves low overhead and high transmission reliability. Our tiered framework flexibly accommodates diverse existing overlay structures in the second tier. Through extensive simulations, we demonstrate that the customized optimization using selected stable nodes can greatly boost the streaming quality and also effectively reduce the control overhead.

Did you like this research project?

To get this research project Guidelines, Training and Code... Click Here

PROJECT TITLE :Distributed Faulty Node Detection in Delay Tolerant Networks: Design and Analysis - 2018ABSTRACT:Propagation of faulty data is a essential issue. In case of Delay Tolerant Networks (DTN) in specific, the rare meeting
PROJECT TITLE : Data-Driven Faulty Node Detection Scheme for Wireless Sensor Networks - 2017 ABSTRACT: During this paper, a faulty node detection theme with a hybrid algorithm using a Markov chain model that performs collective
PROJECT TITLE :Dynamic Node Cooperation in an Underwater Data Collection NetworkABSTRACT:In this paper, we have a tendency to think about a sensible underwater knowledge collection network, where one destination needs to collect
PROJECT TITLE :A Novel Multi-Module Separated Linear UWSNs Sensor NodeABSTRACT:During this paper, we have a tendency to propose a unique design named multi-module separated linear (MMSL) underwater sensor node. Historically, the
PROJECT TITLE :Improvement of Rough Interface Between Barrier/Seed Layer and Porous Ultralow k Film for 28nm Technological Node and BeyondABSTRACT:With crucial dimension of device scaled down to twenty-eight nm technological node

Ready to Complete Your Academic MTech Project Work In Affordable Price ?

Project Enquiry